MATH 303 - MEASURES AND INTEGRATION
FINAL EXAM STUDY GUIDE
SOLUTIONS TO PRACTICE PROBLEMS

Understanding main definitions and theorems. 2 required problems of this type will appear
on the exam. Possible additional problems of this kind are to prove one of the results marked with
asterisks.

Problem 1.

(a) State the monotone convergence theorem.

(b) State the dominated convergence theroem.

(c) Use the dominated convergence theorem to give a proof of the monotone convergence theorem.
[Hint: If sup,cy [y |fn| dp < 0o, then the set {z € X : f,(x) # 0 for some n} is a o-finite set.
Use this to reduce to the case that the measure space is finite.]

Solution: (a) See Theorem 3.10 in the lecture notes.
(b) See Theorem 3.28.

(c) Let 0 < f1 < fo < ... be measurable functions and f = lim, o fn. By mono-
tonicity of the integral, limpen [y fn dp exists and is bounded above by [ f du. Hence, if
SUpP,en fX fn du = oo, then we also have fX f du = oo, and there is nothing to prove.

Assume sup,,cy [y fn dp = M < co. We want to show [, f du= M. Let Xo = {z € X :
fn(z) # 0 for some n € N}. Note that

and

:u({fn>1})§m/ Jn dp < mM < oo
m X

by Markov’s inequality. Thus, Xy is a o-finite set. Moreover, f, f, =0 on X \ Xy, so we may
focus our attention on the set Xj.

Write Xg = UkeN X as an increasing union of measurable sets X; C X, C ... with
u(Xi) < oo. Let My = sup,en ka fn dp. We claim that My = kaf dp. By mono-
tonicity, M), < kaf dpu, so it suffices to show kaf dp < My. Let s : X — [0,00) be
a simple function, 0 < s < f. Define g, = min{f,,s} so that 0 < ¢ < go < ... and
lim;, 00 gn = s. The simple function s is integrable since pu(Xy) < oo, so ka gn dp — ka s duy
by the dominated convergence theorem. On the other hand, by monotonicity of the integral,
ka gn du < ka fn du < Mj. Hence, ka s du < M. Taking a supremum over simple
functions 0 < s < f, we have ka f dp < My, by the definition of the integral.

Now we turn to the integral over Xy. Let s : X — [0,00) be a simple function, 0 < s < f.

We may write s = Z;”Zl ¢lp, for some sets Eq,...,E, € B with F; C Xy and numbers
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C1y---,¢m > 0. Then
m
/ sdu="_ cju(E;NXp),
X =
SO .
sdp="% cjp(E;)= lim s du
/X ]Z; J J k—o00 X

by continuity of yu from below. Therefore, by monotonicity of the integral,
/ sdu < lim M.
X k—o0
Taking a supremum over simple functions 0 < s < f,
/ fdu < lim M.
X k—o00
It remains to check that M = limy_,.o M}. Note that for each n € N, since fX frndu < M < oo,
the dominated convergence theorem implies
[ pn=im [ an
Hence,
= sup/ fn dp = supsup fn dp = sup sup fndu = k]im M,
— 00

neN neN keN keNneNJXx,
by the principle of iterated suprema. Thus, f x J dp < M as desired.

Problem 2. Let (X, B), (Y,C), and (Z, D) be measurable spaces.

(a) Show that (B®C) ® D = B® (C ® D) and that this o-algebra is equal to the o-algebra on
X XY x Z generated by the family of “measurable boxes” {BxC x D : B € B,C € C,D € D}.

(b) Suppose p: B — [0,00], v : C — [0,00], and p : D — [0, 00] are o-finite measures. Show that
(L xv)xp=px(vxp)and that this measure is the unique measure on B ® C ® D assigning
a measure of u(B)v(C)p(D) to each measurable box B x C x D.

Solution: (a) Let F = {BxC x D : B € B,C € C,D € D} be the family of measurable
boxes. Writing B x C x D = (B x C) x D = B x (C x D), we see that F C (B®C) ® D and
F CB®(C®D). It therefore suffices to show (B®&C) @D, B® (C®D) C o(F). We will show
(B®C)®D C o(F). The other inclusion is proved in exactly the same way.

Recall that (B ® C) ® D is defined to be the o-algebra generated by the family of measur-
able rectangles R = {E x D : E € B®C,D € D}, so it suffices to prove R C o(F). Let
F'={E€B®C:FExDEe€og(F) for every D € D}. Then F' contains all measurable rectan-
gles B x C with B € B and C € C. Moreover, since o(F) is a o-algebra, the family F’ is also
a o-algebra (the set operations are preserved under product with D € D). Thus, 7/ = B® C.
This proves o(F) 2 R as desired.

(b) We will apply the m-A theorem. Note that the family of measurable boxes is a 7-system
on X XY x Z:

(Bl x Cq % Dl) N (BQ x Oy X Dg) = (Bl N Bg) X (Cl N CQ) X (Dl N Dg).
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Moreover, given a measurable box B x C' x D, the definition of a product measure provides an
equality

((uxv) x p)(BxCxD)=(uxv)(BxC)pD)=puB)v(C)pD)
= u(B)(v x p)(C x D) = (ux (v xp))(BxCxD),

so (uxv)x pand pux (vxp) are both examples of measures assigning a value of u(B)v(C)p(D)
to every measurable box B x C' x D.

Let wi,we : BR&C®D — [0,00] be any two measures assigning a measure of u(B)v(C)p(D)
to each measurable box B x C x D. We want to show w; = ws.

Since p, v, and p are o-finite, we may write X = J,cy Xn, ¥ = Upen Yoo and Z = U, en Zn
with X1 CXoC ..., V1 CYeC ..., Z1 CZy C...,and u(X,),v(Yy),p(Z,) < oo for every
n € N. Let A, = X,, xY,, x Z, for each n € N. Then A,, is a measurable box, so

(1) wi(An) = p(Xn)v(Yn)p(Zn) = wa(An).
For each n € N, consider the family

L,={EFeBRCRID:w(ENA,) =w(ENA,},
and let £ = (,cnLn. For each n € N, the family £, is a A-system, since the measures
wipn(E) =wi(ENA,) and we ,(E) = wa(ENAy) are finite measures on (X xY x Z, B&C®D)
with wi (X XY X Z) = won(X XY xZ) by (1) and £, = {E € BRCXD : w1 n(E) =wapn(E)}.
(We showed that such families of sets are always A-systems in the exercises; see P5 on Exercise
Sheet 5.) The intersection of A-systems is again a A-system, so £ is a A-system on X x Y x Z
containing the measurable boxes. By the m-A theorem, it follows that B ® C ® D C L. Then
by continuity from below of w; and ws, we have

wi(F) = le w(ENAy,) = le w2 (ENA,) =w(E)
for every £ € B® C ® D. That is, w1 = ws.

Problem 3. Let (X, B, ) be a measure space, and let f € L'(u). Show that the following are
equivalent:

(i) f=0ae;

(i) [y [f] dp=0;

(iii) [ f dp =0 for every E € B.

Solution: See P1 on Exercise Sheet 4 on Moodle.

Applying the main theorems. 6 problems of this type will appear on the exam, out of which
you may choose which 4 to solve.

Problem 4. Let A be the Lebesgue measure on R. For £ > 0, let
:
r— =
q

Show that A\(A:) = 0 for every € > 0.

AE:{xe[O,l]:

1
< — for infinitely many p,q € Z with ¢ > 1} .
gt

[Note: A theorem of Dirichlet, which can be proved using the pigeonhole principle, says that every

irrational number x can be approximated by rationals in such a way that |z — g‘ < q% for infinitely

many p,q € Z with ¢ > 1. This problem shows that the exponent 2 is best possible for almost all
numbers.]
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Solution: For ¢ € N, let

“p 1 op 1
(),
7 Yoo 2+
o N4 g g
Then A. = {z € [0,1] : € A, 4 for infinitely many ¢ € N}. By direct computation, A(A. ;)
(q+ 1)q2% = ql% + qg%, 80 D .21 A(Agq) < oo. Hence, by the Borel-Cantelli lemma, A\(Ac)
0.

Problem 5. Let a € (0,1) and £ > 0.

(a) Show that there exists M € N with the following property: if (X, B, u) is a probability space
and (Ap)nen is a sequence of measurable sets such that inf,cnu(Ay,) = a, then there exist
1 <n<m < M such that u(A4, N A,) > a® —¢.

(b) Prove the following generalization for intersections of more sets. Let k& € N. Show that there
exists My, € N (depending also on a and ) with the property: if (X, B, 1) is a probability space
and (Ap)nen is a sequence of measurable sets such that inf,ecnp(Ay,) = a, then there exist
1<n <ng <- - <ng < Mg such that

A

k
I ﬂ Ap; | > ak —e.
=1

Solution: Part (a) is a special case of (b), so we will go directly to proving (b). Fix a large

value of M to be determined later. Given a probability space (X, B, ) and measurable sets
(Ap)nen with inf,en p(A,) = a, define new sets B, = {ZM 1a,, = n} for 0 < n < M.

m=1
Then for any k, we have

M m
@) S (uBa= X uldm 00

m=0 1<mi<---<mp <M

Since p is a probability space and By U By Ul --- U By, = X, the numbers t,,, = u(B,,) are
nonnegative and sum to 1. Moreover, z > (i) is a convex function, so by Jensen’s inequality,

£ o (501

There are (A,f ) terms on the right hand size of (2), so the average size of a k-fold intersection
is at least

(") _ Ma(Ma—1)...(Ma—k+1)

) MM=1)...(M—k+1)

For fixed a and k, this ratio converges to a* as M — oo. Thus, choosing M large enough
(depending only on a, k, and ), we can ensure

ot
This controls the average size of k-fold intersections, so there must be at least one k-fold
intersection for which the desired inequality holds.

Problem 6. Let (X,B,u) be a measure space and f : X — C a measurable function. Prove
Chebyshev’s inequality: for every ¢ € (0,00) and p € [1, 00),

n{|f] > e}) < (llfllp)”

Cc
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Solution: Let g = cly|f~.}. Then |f| > g, so by monotonicity of the integral,

11 = /X P > /X @ du = Pu{lf] > ¢}).

Dividing both sides by ¢P gives Chebyshev’s inequality.

Problem 7. Let E C R be a Lebesgue-measurable set with A\(E) > 0. Fix a finite set /' C R.
Show that E contains a homothetic copy of F', i.e. a set of the form aF +b = {af +b: f € F}
with @ # 0 and b € R.

[Note: There is a deep theorem in additive combinatorics, known as Szemerédi’s theorem, that
provides a strengthening to the conclusion; namely, one can bound the scaling factor a > § for
some ¢ depending on the set F' and the size of the set E.]

Solution: We first prove a lemma using Littlewood’s first principle.

Lemma. For any ¢ < 1, there exists a bounded open interval I C R such that A(ENI) >
eA(I).

Proof of Lemma. Let ¢ = % so that ch, = ¢. By continuity of A from below, the set
En =EN[—N,N] has A(Ex) > 0 for some N € N. We may therefore assume 0 < A\(F) < oo.
By Littlewood’s first principle, there is a finite collection of disjoint open intervals I; = (a;, b;),

1 =1,...,n, such that
<EA|_| ) (1—)NE).

(E\ U, L), we have

(3) A<E0|_| >>c)\

i) U
Also, writing | |*  I; = (EN | L)

’ N

In particular, combining (3) and (4),
ZA(EOL):A(EHUIZ«) > <|_|I> =c) AT
i=1 ‘ i=1 i=1

Hence, for some i € {1,...,n}, we must have \(E' N I;) > cA(l;), proving the lemma. O

Therefore, writing £ = (E N[ ], I,

C

(|_|¢:1 I;\ E), we have

>

Iz) < (2 — C/>)\(E).
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Let k = |F|. Applying the lemma with ¢ = 1 — i, let I be an open interval such that
AENT) > (1— %) AI). Suppose t1,...,t; € (—6,8) with § = 2. Then

k k
MOAE-t) | =2 (EN) -t;)
=1 =1
k
>\ (I—tj) | —kXI\E)
j=1
k
>A| () UINnT—t)) —A(;)
=1 measure>\(I)—§
>/\(I)—k5—)\(21): .

Take a = so that |af| < d for every f € F. Therefore,

5
maxyep |f+1

M ((E=-af)] >0

fer

In particular, (;cp(E —af) # 0, solet b € ;e p(£ —af). Then af +b € E for every f € F,
so we have found a homothetic copy aF + b in E.

Problem 8. For fixed * € R, let L, = {(z,y) : y € R} C R? be the vertical line over z. Let
7 : R? — R be the projection onto the second coordinate 7(x,%y) = y. Define

7={G CR?: 7(G N L,) is open for every z € R}.

(a) Show that 7 is a topology on R? and (R?,7) is a locally compact Hausdorff space.
(b) Prove that K C R? is compact (with respect to 7) if and only if 7(K N L,) is compact for every
z € Rand K N L, = for all but finitely many z.

(c) Define ¢ : C.(R%,7) — C by
o)=Y [ fa) v

Tz€R
where the integral with respect to y is the Riemann integral. Show that ¢ is a positive linear
functional.
(d) Determine the measure p representing (.

Solution: (a) We check that 7 satisfies the axioms of a topology:
e Jer: m(dN L) =0 for every z € R, and () is open in R.
e RZcr: 7(R*NL,) =R for every x € R and R is open in R.
e 7 is closed under arbitrary unions: if (G;);csr is a family of elements of 7 and G =
Uier Gi, then 7(G N L) = U;c; 7(Gi N Ly) is open in R for every x € R, so G € 7.
e 7 is closed under finite intersections: if G1,G2 € 7, then 7(G1 N G2 N L) = 7(G1 N
Ly)Nm(GaN Ly) is open in R for every z € R, so G N Gq € 7.
It remains to check that (R?,7) is locally compact and Hausdorff. First we show that 7
defines a Hausdorff topology on R?. Let z,y € R?, z # y. Write = (21, 22) and y = (y1, y2).
If 21 # y1, then the sets U = {z1} x R and V = {y1} x R are open neighborhoods of = and y
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respectively, and UNV = . If xg # yo, we take U = Rx (29—0, x2+d) and V = Rx (ya—0, y2+9)
with 6 < 3|2a — yal.

Finally, 7 defines a locally compact topology: given x = (x1,22) € R2, the set U =
{z1} x (x9 — 1,29 + 1) is open its closure K = {x1} X [xo2 — 1,29 + 1] is compact. (Com-
pactness of K follows from the argument we present below for part (b)).

(b) Suppose K is compact. We want to show 7(K N L;) is compact for every x € R and
K N L, =0 for all but finitely many z.

Fix ¢ € R, and let K, = 7n(K N L;). Let (U;);cr be an open cover of K, in R. Then
K C Ujer({z} x U;) U (R\ {z}) x R). Since K is compact, there is a finite subcover K C
Uj—i({z} x Ui;) U (R\ {z}) x R). But then K, C (Jj_, U;;. Thus, we have extracted a finite
subcover of K,, so K, is compact.

Now consider the family of sets U, = {z} x R. Then (U,).cr is an open cover of K, so there
exists a finite set F' C R such that K C |J,cp U,. In other words, 7(K N L,) = (0 for x ¢ F.

Conversely, suppose K satisfies the two properties: 7(K N L,) is compact for every z € R
and K N L, = § for all but finitely many x. Let (G;);c; be a family of sets in 7 such that
K C U, Gi. By assumption, the set F' = {z € R: m(KNL;) # 0} is finite. Moreover, for each
x € F, the set K, = m(K N L;) is compact, and we have an open cover K, C | J;c; 7(Gi N Ly).
Hence, there is a finite subcover K, C UieJm w(G; N Ly) for some finite set J, C I. Letting
J = U,er Jz, we have that J is finite and K C (J;c; G;. Thus, K is a compact subset of (R2, 7).

(c) Let f € C.(R%,7), and let K = supp(f). By (b), the set F = {z € R: 7(K N L;) # 0}
is finite, and K; = (K N L;) is compact for each z € F. We can therefore evaluate

oH=3 /K f(x.y) dy

TzeF
as a finite sum of Riemann integrals. Thus, the a priori infinite sum in the definition of ¢ is in
fact finite, so ¢ is well-defined. Linearity of ¢ follows from linearity of addition and the Rie-
mann integral, and positivity of ¢ follows from positivity of the Riemann integral. Therefore
¢ is a positive linear functional on C,.(R?, 7).

(d) We claim that the measure ;1 can be evaluated as follows: if E C R? is a Borel set (with
respect to 7), then

(5) W(E) = {

Here, E, is the cross-section E, = {y € R : (z,y) € E} = n(E N L,), and \ is the Lebesgue
measure on R.

Let v(F) be the quantity defined by the right hand side of (5). By the uniqueness part of
the Riesz representation theorem, it suffices to check that v is a Radon measure on (R?,7) and

Jgz £ dv = o(f) for f € Ce(R?, 7).

Yoper AN Ey), if I ={xeR:E, # 0} is countable,

0, otherwise.

Claim 1: v is a measure.

If E = (), then E, = ) for every z € R, so v(#) = 0. Suppose Fj, Fs,--- € Borel(R?, )
are pairwise disjoint, and let £ = | | .y En. Then E, = ||, y(En)s for every z € R. Let
I, = {z € R: (E,), # 0} for each n € N, and note that I = {J, o In. If I, is uncountable
for some n € N (in which case v(E,,) = 00), then I is uncountable, so v(E) = oco. Therefore,
v(E) = > 72, v(Eg). On the other hand, if I, is countable for every n € N, then I is also
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countable, and we have

v(E) = Z)‘(Ex) = Z A < |_| (En)x) = Z Z A(En)z) = Z Z)‘ ((En)z) = Z v(En).
zel zel neN zel n=1 n=1zel n=1

The interchange in the order of summation is justified by the fact that all of the quantities
A ((En)z) are nonnegative. This proves that v is a measure.

Claim 2: v is locally finite.

Let K C R? be compact (with respect to 7). Then by part (b), theset I = {z € R: K, # ()}
is finite, and K is compact for every x € I. Hence, by local finiteness of the Lebesgue measure
A, we have that

AK) = SO A(K,)
zel
is a finite sum of finite numbers, so A(K) < oo.

Claim 3: v is outer regular.

Let E € Borel(R?,7) be an arbitrary Borel set. We want to show v(E) = infysg open v(U)-
Monotonicity of v produces the inequality v(E) < infysg open ¥(U), so it suffices to check
V(E) > infysg open V(U). If v(E) = oo, there is nothing to check, so assume v(E) < oo.
That is, I = {z € R : E; # 0} is countable and v(E) = > ; A(E;) < co. Let € > 0. For
each x € I, let €, > 0 such that ) _;e, = . (This is made possible by the fact that I is a
countable set.) By outer regularity of the Lebesgue measure, we may choose, for each x € I,
an open set U, 2 E, such that A\(Uy) < A(E;) +¢ez. Let U = | |,.;({z} x Uz). Then U D E is
open in (R?,7) and v(U) = 3, .; M(Uy) < v(E)+e. Thus, v(E) > infysg open ¥(U) as desired.

Claim 4: v is inner regular on open sets.

Let U C R? be open (with respect to 7). We want to show v(U) = supxcy compacs ¥(K).-
By the definition of the topology 7, the set U, is open for every x € R.

First suppose I = {z € R: U, # (0} is countable. Then

v(U) = MNE,) = sup > ME,).
el FCI finite * =7,

Let FF C I be an arbitrary finite subset. Let € > 0 be arbitrary. By inner regularity of the
Lebesgue measure, pick a compact set K, C E, with A(K,) > A(E;) — = for each x € F.

[F]
Then K = | |, p({z} x K) is compact in (R?,7) by part (b), and

V(K) =Y AK:) > > AME,) —e.
el zeF
Thus, SUPKCU compact V(K) 2 V(U)

Now suppose [ = {z € R : U, # 0} is uncountable. In this case, we want to show
SUP K/ compact V(H) = 00. Note that A(U;) > 0 for every = € I, since every open subset of
the real line has positive Lebesgue measure. Therefore, I, = {x € R : A(U;) > 1} is infinite
(in fact, uncountable) for some n € N. By inner regularity of the Lebesgue measure, there
exist compact sets K, C U, for each = € I,, with the property A\(K,) > ﬁ Given any finite
set F' C I, the set Kp = | |,cp({z} x K;) is a compact subset of U, and

V(Kp) = YONK) > o |
xeF
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Therefore, SUP k1 compact ¥(K) = 00 as desired.

Claims 1-4 together show that v is a Radon measure. The next claim therefore completes
the proof.
Claim 5: For every f € C.(X),

1w =eth.

Decomposing f into its real and imaginary parts and then each of these into positive and
negative parts, we may assume that f is a nonnegative real-valued function. Let K = supp(f),
and let I = {x € R : K, # 0}. By (b), I is a finite set and K, is compact for every
z €. Let 0 <s1 <s9<... bea sequence of simple functions increasing to f. We may write
Sp = Ef 1CnjlE, ; withc, ; > 0and B, ; C K, since f vanishes outside of K and 0 < s, < f.
Then

kn kn
[ oniv=3"cosutB Z%ZA )= 33 eniA (Bug)) = X [ (s0)e
j=1

zel zel j=1 xzel
Applying the monotone convergence theorem twice, we conclude

R2fdl/:nh_>1rrc}o S”dV:nh_,HOIOZ/S"xy ) dA\(y Z/ flx,y) dy = o(f)-

2
R xzel

Problem 9. For x € [0,1), consider the binary expansion z = 372, ag(f) with a;(x) € {0,1}. Let
f(z) =min{j € N:qj(z) = 1}.

(a) Show that f is Borel-measurable.

(b) Compute the integral of f with respect to the Lebesgue measure on [0, 1).

[Note: This problem has a probabilistic interpretation. Sampling = € [0, 1) randomly according to
the Lebesgue measure, the sequence ag(x),a2(x),as(z),... is a sequence of independent fair coin
flips (where we interpret 0 as tails and 1 as heads). With this interpretation, the value of f[o 1 fdA

is the expected number of flips required until we see a result of heads.]

Solution: (a) The function f may be rewritten as
J=1puy1) +2L14,1/2) + Zn]lz n 9—(n—1)),
which is the supremum of a sequence of measurable sunple functions, hence measurable.

(b) By the monotone convergence theorem and the series expression for f,

/01 f(x) dzx :gn (2_("_1) —2_") = 3 2%

n=1
To compute the value of this sum, we consider the power series g(z) = Y -, na™. Note that
g(z) converges absolutely for |z| < 1, so we may differentiate term by term to obtain the

expression
— n—1 — —
x)—a:nEZInw =z (E m) z (1_$)—(1_$)2.
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Substituting x = %, we conclude

/Olf(a?) dx = 2.

Problem 10. Let (X, B, 1) be a measure space. Show that the following are equivalent:
(i) p is s-finite;
(ii) there exists a finite measure v such that p ~ v;

(iii) there exists a o-finite measure v such that pu < v.

Solution: (i) = (ii). This is essentially contained in the proof of the Lebesgue decom-
position theorem in the lecture notes. Write p = Y 7 pp with p,(X) < oo, and define
v=>, W Then v(X) <1 and p < v.

(ii) = (iii). Finite measures are o-finite, so this implication is immediate.

(iii) = (i). Let v be a o-finite measure such that ;1 < v. Then by the Radon-Nikodym
theorem, there exists a Radon—Nikodym derivative f = %. Moreover, since v is o-finite, we

may decompose X = | |, Xpn with v(X,,) < oco. For m >0, let

S = ((f =m)Lime p<mry + Lpsminy) 1x,.-
Then 0 < f,n <1, fX fmm dv < v(X,) < oo, and

SNt =D ((f = M) pemiry + Lipsmeny) = f-

m=0n=1 m=0
Therefore, if we define measures (i, n by dptm n = frmn dv, then iy, , is a finite positive measure
for every m,n, and p= 3", . tmn, 50 p is s-finite.

Problem 11. Let uj, pu2 be finite positive measures on a measurable space (X, ). Characterize
the pairs (p1, po) for which (u1 — po)t = p1 and (g — p2)™ = po.

Solution: Let = p; — po. We claim that ™ = p; and p= = po if and only if 1 L po.
First if pu; L po, then pu; and po are mutually singular positive measures such that pu =
p1 — 2, so by uniqueness of the Jordan decomposition, u1 = p* and po = .
Conversely, suppose u™ = pq and u~ = ps. By the Jordan decomposition theorem, the
measures p and p~ are mutually singular, so pu; L ps.

Problem 12. Let (X, B, ) be a finite measure space, and let A, B € B. Define v(E) = u(E N
A)—pu(ENB) for E € B.

(a) Show that v is a signed measure.

(b) Determine the Hahn decomposition of v.

(c) Show that v < p.

(d) Compute the Radon—Nikodym derivative g—z.

Solution: (a) Since p is a finite measure, the difference y(ENA)—u(ENDB) is well-defined. We
must check v(()) = 0 and v is countable additive. Both properties follow from the corresponding
properties of the measure u:

v(0) = pu(@NA) = pn B) = pu(@) - u®) =0,
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and if (E,)nen are pairwise disjoint and E = | |,y En, then

WE) =S w(Ban A) =S 1B N B) 2 S (u(By 0 A) = p(B, 0 B) = 3 v(En).
n=1 m=1 n=1 n=1

In step (x), the reordering of the sum is justified by noting that p is a finite measure, so all
of the sums involved are absolutely convergent and can be freely rearranged by the Riemann
rearrangement theorem.

(b) We claim that (A, X \ A) is a Hahn decomposition of v. Indeed, if E € B with E C A,
then

V(E) = p(ENA) = w(EB) = p(EN A) - p(EN (AN B)) ~u(EN (B\ A)) > 0.

>0 0

Moreover, if E € Band E C X \ A, then

v(iE)=pnENA) —pn(ENB)=—-u(ENB)<O0.
0

(c) Suppose u(N) = 0. We want to show that N is a v-null set. Let E € B with E C N.
Then v(E) = p(ENA) —pw(ENB)=0,so0 N is v-null as desired.
N CN
c <

(d) We claim Z—Z =14 — 1p p-a.e. To see this, let £ € B. Then

[ =18y du= [ (L4101 du = [ aop—Lane) dn = w(ANE) - w(BNE) = v(E),
FE X X

sodv = (14 — 1p) du as claimed.

Problem 13. Let X be an LCH space, and let © be a Radon measure on X. Show that there
exists a closed set C' C X with the following two properties:

(i) p(X\C) =0, and
(ii) if U € X is open and U N C # (), then pu(U) > 0.

[Note: The set C'is called the (topological) support of the measure p.]

Solution: Let & = {U C X open : u(U) = 0}, and define C' = X \ Uy, U. Then C is a
closed subset, and we will check that it has the desired properties.

(i) Let V = X\ C = Uy U. We want to show (V) = 0. Since V' is open and p is a
Radon measure, we have

p(V)= sup  p(K)
KCV compact

by inner regularity of Radon measures on open sets. It therefore suffices to show: if K C V is
compact, then u(K) = 0. Let K C V be compact. By compactness, we may find finitely many
Uy,...,U, € U such that K C U?Zl Uj. Then by monotonicity and (countable) subadditivity
of p,

W(E) <> uU;) =0
j=1
since U; € U for each j € {1,...,n}. This proves (i).

(ii) Suppose U C X is open and U NC # (). Then U ¢ U, so pu(U) > 0.
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Problem 14. Let (X, B, 1) be a o-finite measure space. Suppose v1, vy are positive measures on
(X, B, ) with v1(X) = 15(X) =1 and vy, 9 < pu. Show

sup (11(E) — 1a(E)) = = /X

EeB 2

dV1 Cll/Q

dp  dp H-

Solution: Let v = v1 — 9. Finiteness of the measures v1 and v ensures that v is a well-defined
signed measure. Then the left hand side is equal to v (E) and the right hand side is equal to

(6) : | |5

—| du.
du a
We showed in the last homework assignment that

g—z is the Radon—Nikodym derivative of |v|

with respect to p. Hence, (6) is equal to
1 [ dv| 1
S A g = (0.
5 | S dn = 5IX)
Thus, our goal is to show v (X) = |v|(X). Since |v| = v +v~, this is equivalent to showing
v (X) =v (X), but this follows immediately from the assumption v4(X) = v2(X) < oco:
vFX)—v (X)) =T —v)(X)=v(X) = (11 —1n)(X) =11 (X) —1a(X) =0.

Problem 15. Let A, B C [0,1) be Lebesgue-measurable sets. For each t € [0,1), let B, = {b+
mod 1:b € B}. Show that there exists t € [0,1) such that A\(AN By) > A(A)A(B).

Solution: We will show that the average size of the intersection A(ANB;) = A(A)A(B). Indeed,
by Tonelli’s theorem and invariance of Lebesgue measure under translation and reflection, we

have
1 1,1
//\(AﬂBt) dt:/ / Lang,(z) dx dt
0 0o Jo

_ /01 /01 1a(2) 1, (2) da dt

11

:/ / 1a(z)lp(x —tmod 1) dz dt
0o Jo
1

:/O 1az) </01113(a;—tmod1) dt) dx

1 1
:/0 Ta(x) dx/o 1p(t) dt
= AA)A(B).

Subtracting A(A)A(B) from both sides, we obtain
1
/ (MAN By) — MAA(B)) dt =0,
0

so there exists t € [0,1) such that A(AN B) — A(A)A(B) > 0. That is, A\(AN B:) > A(A)A(B).

Problem 16. Let X be a compact metric space, and let T : X — X be a continuous function. We
say that a probability measure p : Borel(X) — [0, 00] is T-invariant if u(T~'E) = u(E) for every
E € Borel(X). Denote by M(X,T) the space of T-invariant Borel probability measures on X.

(a) Show that M(X,T) is a convex set.

Given a convex set C, a point z € C' is an extreme point if the only solution to x = ty + (1 — t)z
fort € (0,1) and y,z € Cisy =z = x.



MATH 303 EXAM STUDY GUIDE 13

(b) Let p € M(X,T). Show that the following are equivalent:
(i) p is an extreme point of M(X,T).
(i) if E € B and p (EAT'E) =0, then pu(E) € {0,1}.
[Hint for (ii) = (i): Suppose p satisfies (ii), and write p = tvy + (1 — t)vy with v, €
M(X,T) and t € (0,1). Let f = ‘fi—’ﬁ and consider F = {f < 1}. Show that fE\T*lEf dp =
fT*lE\E f du and deduce that f =1 a.e.]
A measure satisfying (ii) is called ergodic. Let £(X,T) denote the set of ergodic T-invariant Borel
probability measures on X.

(¢) Suppose p,v € E(X,T) and pu # v. Show that u L v.

Solution: (a) Let p,v € M(X,T) and t € [0,1]. Let p = tp+ (1 — t)v. We want to show
p e M(X,T). Let E € Borel(X). Then

p(T7'E) = tp (17'E) + (1~ ) (1) = tu(E) + (1~ (E) = p(E)

by T-invariance of y and v.

(b) Suppose p is an extreme point of M(X,T"). We want to show p is an ergodic measure.
Let E € B such that u(EAT 1E) = 0 and suppose for contradiction that t = u(E) € (0,1).
Define probability measures p1, ua : Borel(X) — [0, 1] by

i(A) =t u(ANE)  and  pa(A) = (1— )" Lp(A )\ B).
Note that
i (T714) =t (17 AN B) ey (1 AN T B) B (A0 B) = i (4),
where in (¥) we use u(EAT 1E) =0 and in (**) we use T-invariance of y. Similarly,
e (T714) = (1=0) 7 (T A\ B) = (L—1) " (T AN T'E) = (1-0) u(A\ ) = pa(A).

Thus, u1,u2 € M(X,T), so p=tu + (1 — t)us expresses p as a nontrivial linear combination
of elements of M(X,T). This contradicts the assumption that p is an extreme point. Thus,
pu(E) € {0,1} and p is an ergodic measure.

Conversely, suppose p is ergodic and write p = tvy + (1 — t)vy with v1, 10 € M(X,T) and
t € (0,1). We want to show v = v = u. Note that vy, e < u. Let f = ij—’:}, and consider
E = {f < 1}. Then (as in the proof of the Radon—Nikodym theorem) the pair (E, X \ E) is a
Hahn decomposition of the signed measure p—v;. Since p and v are both T-invariant, the pair
(I''E,X \T7'E) is also a Hahn decomposition of s — vy. Hence, EAT'E is a (j — vy )-null
set by (the uniqueness part of) the Hahn decomposition theorem. In particular, EAT'E is
p-null. By the ergodicity assumption, it follows that u(E) € {0,1}. If u(E) = 1, then f < 1
p-a.e., so v1(X) = [y f du < p(X) = 1, which is impossible, since v; is a probability measure.
Hence, p(F) =0, s0 f > 1 p-a.e. A similar argument shows f <1 p-a.e, so f =1 p-a.e. That
is, 1 = p. This proves that p is an extreme point of M(X,T).

(*:*)

(c) Let p,v € E(X,T) with p # v. Let v = v, + vs be the Lebesgue decomposition of v
with respect to p. Write X = ALl B with A, B € B such that v,(B) =0 and vs(A) = 0. Then
(A, B) is a Hahn decomposition for the signed measure co - — v and v,(E) = v(EN A) and
vs(E) = v(EN B) for E € B. By T-invariance of y and v, the pair (T-'A,T~'B) is also a
Hahn decomposition of oo -y — v, so AANT'A = BAT™'B is a null set for co - — v. In
particular, v, and v, are T-invariant measures. Suppose for contradiction that v, # 0. Then

p = Va”(‘k) € M(X,T) and p < v and p < p. By the argument in the last paragraph in the
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proof of part (b), it follows that p = v and p = u. Hence, v = pu. This is a contradiction, so
we must have v, = 0. That is, v = v, is singular to u.




