
MATH 303 - MEASURES AND INTEGRATION

FINAL EXAM STUDY GUIDE

SOLUTIONS TO PRACTICE PROBLEMS

Understanding main definitions and theorems. 2 required problems of this type will appear
on the exam. Possible additional problems of this kind are to prove one of the results marked with
asterisks.

Problem 1.

(a) State the monotone convergence theorem.
(b) State the dominated convergence theroem.
(c) Use the dominated convergence theorem to give a proof of the monotone convergence theorem.

[Hint: If supn∈N
∫
X |fn| dµ < ∞, then the set {x ∈ X : fn(x) ̸= 0 for some n} is a σ-finite set.

Use this to reduce to the case that the measure space is finite.]

Solution: (a) See Theorem 3.10 in the lecture notes.

(b) See Theorem 3.28.

(c) Let 0 ≤ f1 ≤ f2 ≤ . . . be measurable functions and f = limn→∞ fn. By mono-
tonicity of the integral, limn∈N

∫
X fn dµ exists and is bounded above by

∫
X f dµ. Hence, if

supn∈N
∫
X fn dµ = ∞, then we also have

∫
X f dµ = ∞, and there is nothing to prove.

Assume supn∈N
∫
X fn dµ = M < ∞. We want to show

∫
X f dµ = M . Let X0 = {x ∈ X :

fn(x) ̸= 0 for some n ∈ N}. Note that

X0 =
⋃

n,m∈N

{
fn >

1

m

}
and

µ

({
fn >

1

m

})
≤ m

∫
X
fn dµ ≤ mM < ∞

by Markov’s inequality. Thus, X0 is a σ-finite set. Moreover, f, fn = 0 on X \X0, so we may
focus our attention on the set X0.

Write X0 =
⋃

k∈NXk as an increasing union of measurable sets X1 ⊆ X2 ⊆ . . . with
µ(Xk) < ∞. Let Mk = supn∈N

∫
Xk

fn dµ. We claim that Mk =
∫
Xk

f dµ. By mono-

tonicity, Mk ≤
∫
Xk

f dµ, so it suffices to show
∫
Xk

f dµ ≤ Mk. Let s : Xk → [0,∞) be

a simple function, 0 ≤ s ≤ f . Define gn = min{fn, s} so that 0 ≤ g1 ≤ g2 ≤ . . . and
limn→∞ gn = s. The simple function s is integrable since µ(Xk) < ∞, so

∫
Xk

gn dµ →
∫
Xk

s dµ

by the dominated convergence theorem. On the other hand, by monotonicity of the integral,∫
Xk

gn dµ ≤
∫
Xk

fn dµ ≤ Mk. Hence,
∫
Xk

s dµ ≤ Mk. Taking a supremum over simple

functions 0 ≤ s ≤ f , we have
∫
Xk

f dµ ≤ Mk by the definition of the integral.

Now we turn to the integral over X0. Let s : X → [0,∞) be a simple function, 0 ≤ s ≤ f .
We may write s =

∑m
j=1 cj1Ej for some sets E1, . . . , Em ∈ B with Ej ⊆ X0 and numbers

1
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c1, . . . , cm ≥ 0. Then ∫
Xk

s dµ =
m∑
j=1

cjµ(Ej ∩Xk),

so ∫
X
s dµ =

m∑
j=1

cjµ(Ej) = lim
k→∞

∫
Xk

s dµ

by continuity of µ from below. Therefore, by monotonicity of the integral,∫
X
s dµ ≤ lim

k→∞
Mk.

Taking a supremum over simple functions 0 ≤ s ≤ f ,∫
X
f dµ ≤ lim

k→∞
Mk.

It remains to check that M = limk→∞Mk. Note that for each n ∈ N, since
∫
X fn dµ ≤ M < ∞,

the dominated convergence theorem implies∫
X
fn dµ = lim

k→∞

∫
Xk

fn dµ.

Hence,

M = sup
n∈N

∫
X
fn dµ = sup

n∈N
sup
k∈N

∫
Xk

fn dµ = sup
k∈N

sup
n∈N

∫
Xk

fn dµ = lim
k→∞

Mk

by the principle of iterated suprema. Thus,
∫
X f dµ ≤ M as desired.

Problem 2. Let (X,B), (Y, C), and (Z,D) be measurable spaces.

(a) Show that (B ⊗ C) ⊗ D = B ⊗ (C ⊗ D) and that this σ-algebra is equal to the σ-algebra on
X×Y ×Z generated by the family of “measurable boxes” {B×C×D : B ∈ B, C ∈ C, D ∈ D}.

(b) Suppose µ : B → [0,∞], ν : C → [0,∞], and ρ : D → [0,∞] are σ-finite measures. Show that
(µ× ν)× ρ = µ× (ν × ρ) and that this measure is the unique measure on B ⊗ C ⊗D assigning
a measure of µ(B)ν(C)ρ(D) to each measurable box B × C ×D.

Solution: (a) Let F = {B × C × D : B ∈ B, C ∈ C, D ∈ D} be the family of measurable
boxes. Writing B × C ×D = (B × C)×D = B × (C ×D), we see that F ⊆ (B ⊗ C)⊗D and
F ⊆ B⊗ (C ⊗D). It therefore suffices to show (B⊗C)⊗D,B⊗ (C ⊗D) ⊆ σ(F). We will show
(B ⊗ C)⊗D ⊆ σ(F). The other inclusion is proved in exactly the same way.

Recall that (B ⊗ C) ⊗ D is defined to be the σ-algebra generated by the family of measur-
able rectangles R = {E × D : E ∈ B ⊗ C, D ∈ D}, so it suffices to prove R ⊆ σ(F). Let
F ′ = {E ∈ B ⊗ C : E ×D ∈ σ(F) for every D ∈ D}. Then F ′ contains all measurable rectan-
gles B × C with B ∈ B and C ∈ C. Moreover, since σ(F) is a σ-algebra, the family F ′ is also
a σ-algebra (the set operations are preserved under product with D ∈ D). Thus, F ′ = B ⊗ C.
This proves σ(F) ⊇ R as desired.

(b) We will apply the π-λ theorem. Note that the family of measurable boxes is a π-system
on X × Y × Z:

(B1 × C1 ×D1) ∩ (B2 × C2 ×D2) = (B1 ∩B2)× (C1 ∩ C2)× (D1 ∩D2).
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Moreover, given a measurable box B×C ×D, the definition of a product measure provides an
equality

((µ× ν)× ρ) (B × C ×D) = (µ× ν)(B × C)ρ(D) = µ(B)ν(C)ρ(D)

= µ(B)(ν × ρ)(C ×D) = (µ× (ν × ρ))(B × C ×D),

so (µ×ν)×ρ and µ×(ν×ρ) are both examples of measures assigning a value of µ(B)ν(C)ρ(D)
to every measurable box B × C ×D.

Let ω1, ω2 : B ⊗ C ⊗D → [0,∞] be any two measures assigning a measure of µ(B)ν(C)ρ(D)
to each measurable box B × C ×D. We want to show ω1 = ω2.

Since µ, ν, and ρ are σ-finite, we may write X =
⋃

n∈NXn, Y =
⋃

n∈N Yn, and Z =
⋃

n∈N Zn

with X1 ⊆ X2 ⊆ . . . , Y1 ⊆ Y2 ⊆ . . . , Z1 ⊆ Z2 ⊆ . . . , and µ(Xn), ν(Yn), ρ(Zn) < ∞ for every
n ∈ N. Let An = Xn × Yn × Zn for each n ∈ N. Then An is a measurable box, so

(1) ω1(An) = µ(Xn)ν(Yn)ρ(Zn) = ω2(An).

For each n ∈ N, consider the family

Ln = {E ∈ B ⊗ C ⊗ D : ω1(E ∩An) = ω2(E ∩An)} ,
and let L =

⋂
n∈N Ln. For each n ∈ N, the family Ln is a λ-system, since the measures

ω1,n(E) = ω1(E∩An) and ω2,n(E) = ω2(E∩An) are finite measures on (X×Y ×Z,B⊗C⊗D)
with ω1,n(X×Y ×Z) = ω2,n(X×Y ×Z) by (1) and Ln = {E ∈ B⊗C⊗D : ω1,n(E) = ω2,n(E)}.
(We showed that such families of sets are always λ-systems in the exercises; see P5 on Exercise
Sheet 5.) The intersection of λ-systems is again a λ-system, so L is a λ-system on X × Y × Z
containing the measurable boxes. By the π-λ theorem, it follows that B ⊗ C ⊗ D ⊆ L. Then
by continuity from below of ω1 and ω2, we have

ω1(E) = lim
n→∞

ω1(E ∩An) = lim
n→∞

ω2(E ∩An) = ω2(E)

for every E ∈ B ⊗ C ⊗ D. That is, ω1 = ω2.

Problem 3. Let (X,B, µ) be a measure space, and let f ∈ L1(µ). Show that the following are
equivalent:

(i) f = 0 a.e.;
(ii)

∫
X |f | dµ = 0;

(iii)
∫
E f dµ = 0 for every E ∈ B.

Solution: See P1 on Exercise Sheet 4 on Moodle.

Applying the main theorems. 6 problems of this type will appear on the exam, out of which
you may choose which 4 to solve.

Problem 4. Let λ be the Lebesgue measure on R. For ε > 0, let

Aε =

{
x ∈ [0, 1] :

∣∣∣∣x− p

q

∣∣∣∣ < 1

q2+ε
for infinitely many p, q ∈ Z with q ≥ 1

}
.

Show that λ(Aε) = 0 for every ε > 0.

[Note: A theorem of Dirichlet, which can be proved using the pigeonhole principle, says that every

irrational number x can be approximated by rationals in such a way that
∣∣∣x− p

q

∣∣∣ < 1
q2

for infinitely

many p, q ∈ Z with q ≥ 1. This problem shows that the exponent 2 is best possible for almost all
numbers.]
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Solution: For q ∈ N, let

Aε,q =

q⋃
p=0

(
p

q
− 1

q2+ε
,
p

q
+

1

q2+ε

)
.

Then Aε = {x ∈ [0, 1] : x ∈ Aε,q for infinitely many q ∈ N}. By direct computation, λ(Aε,q) ≤
(q+1) 2

q2+ε = 2
q1+ε +

1
q2+ε , so

∑∞
q=1 λ(Aε,q) < ∞. Hence, by the Borel–Cantelli lemma, λ(Aε) =

0.

Problem 5. Let a ∈ (0, 1) and ε > 0.

(a) Show that there exists M ∈ N with the following property: if (X,B, µ) is a probability space
and (An)n∈N is a sequence of measurable sets such that infn∈N µ(An) = a, then there exist
1 ≤ n < m ≤ M such that µ(An ∩Am) > a2 − ε.

(b) Prove the following generalization for intersections of more sets. Let k ∈ N. Show that there
exists Mk ∈ N (depending also on a and ε) with the property: if (X,B, µ) is a probability space
and (An)n∈N is a sequence of measurable sets such that infn∈N µ(An) = a, then there exist
1 ≤ n1 < n2 < · · · < nk ≤ Mk such that

µ

 k⋂
j=1

Anj

 > ak − ε.

Solution: Part (a) is a special case of (b), so we will go directly to proving (b). Fix a large
value of M to be determined later. Given a probability space (X,B, µ) and measurable sets

(An)n∈N with infn∈N µ(An) = a, define new sets Bn =
{∑M

m=1 1Am = n
}

for 0 ≤ n ≤ M .

Then for any k, we have

(2)
M∑

m=0

(
m

k

)
µ(Bm) =

∑
1≤m1<···<mk≤M

µ(Am1 ∩ · · · ∩Amk
).

Since µ is a probability space and B0 ⊔ B1 ⊔ · · · ⊔ Bm = X, the numbers tm = µ(Bm) are
nonnegative and sum to 1. Moreover, x 7→

(
x
k

)
is a convex function, so by Jensen’s inequality,

M∑
m=0

(
m

k

)
µ(Bm) ≥

(∑M
m=0mµ(Bm)

k

)
≥
(
Ma

k

)
.

There are
(
M
k

)
terms on the right hand size of (2), so the average size of a k-fold intersection

is at least (
Ma
k

)(
M
k

) =
Ma(Ma− 1) . . . (Ma− k + 1)

M(M − 1) . . . (M − k + 1)
.

For fixed a and k, this ratio converges to ak as M → ∞. Thus, choosing M large enough
(depending only on a, k, and ε), we can ensure(

Ma
k

)(
M
k

) > ak − ε.

This controls the average size of k-fold intersections, so there must be at least one k-fold
intersection for which the desired inequality holds.

Problem 6. Let (X,B, µ) be a measure space and f : X → C a measurable function. Prove
Chebyshev’s inequality: for every c ∈ (0,∞) and p ∈ [1,∞),

µ ({|f | > c}) ≤
(∥f∥p

c

)p
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Solution: Let g = c1{|f |>c}. Then |f | ≥ g, so by monotonicity of the integral,

∥f∥pp =
∫
X
|f |p dµ ≥

∫
X
gp dµ = cpµ({|f | > c}).

Dividing both sides by cp gives Chebyshev’s inequality.

Problem 7. Let E ⊆ R be a Lebesgue-measurable set with λ(E) > 0. Fix a finite set F ⊆ R.
Show that E contains a homothetic copy of F , i.e. a set of the form aF + b = {af + b : f ∈ F}
with a ̸= 0 and b ∈ R.

[Note: There is a deep theorem in additive combinatorics, known as Szemerédi’s theorem, that
provides a strengthening to the conclusion; namely, one can bound the scaling factor a > δ for
some δ depending on the set F and the size of the set E.]

Solution: We first prove a lemma using Littlewood’s first principle.
Lemma. For any c < 1, there exists a bounded open interval I ⊆ R such that λ(E ∩ I) >

cλ(I).

Proof of Lemma. Let c′ = 2c
1+c so that c′

2−c′ = c. By continuity of λ from below, the set

EN = E ∩ [−N,N ] has λ(EN ) > 0 for some N ∈ N. We may therefore assume 0 < λ(E) < ∞.
By Littlewood’s first principle, there is a finite collection of disjoint open intervals Ii = (ai, bi),
i = 1, . . . , n, such that

λ

(
E△

n⊔
i=1

Ii

)
< (1− c′)λ(E).

Therefore, writing E = (E ∩
⊔n

i=1 Ii) ⊔ (E \
⊔n

i=1 Ii), we have

(3) λ

(
E ∩

n⊔
i=1

Ii

)
> c′λ(E).

Also, writing
⊔n

i=1 Ii = (E ∩
⊔n

i=1 Ii) ⊔ (
⊔n

i=1 Ii \ E), we have

(4) λ

(
n⊔

i=1

Ii

)
< (2− c′)λ(E).

In particular, combining (3) and (4),

n∑
i=1

λ(E ∩ Ii) = λ

(
E ∩

n⊔
i=1

Ii

)
>

c′

2− c′
λ

(
n⊔

i=1

Ii

)
= c

n∑
i=1

λ(Ii).

Hence, for some i ∈ {1, . . . , n}, we must have λ(E ∩ Ii) > cλ(Ii), proving the lemma. □
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Let k = |F |. Applying the lemma with c = 1 − 1
2k , let I be an open interval such that

λ(E ∩ I) >
(
1− 1

2k

)
λ(I). Suppose t1, . . . , tk ∈ (−δ, δ) with δ = λ(I)

2k . Then

λ

 k⋂
j=1

(E − tj)

 ≥ λ

 k⋂
j=1

((E ∩ I)− tj)


≥ λ

 k⋂
j=1

(I − tj)

− kλ(I \ E)

> λ

 k⋂
j=1

(I ∩ (I − tj))︸ ︷︷ ︸
measure>λ(I)−δ

− λ(I)

2

> λ(I)− kδ − λ(I)

2
= 0.

Take a = δ
maxf∈F |f |+1 so that |af | < δ for every f ∈ F . Therefore,

λ

⋂
f∈F

(E − af)

 > 0.

In particular,
⋂

f∈F (E − af) ̸= ∅, so let b ∈
⋂

f∈F (E − af). Then af + b ∈ E for every f ∈ F ,
so we have found a homothetic copy aF + b in E.

Problem 8. For fixed x ∈ R, let Lx = {(x, y) : y ∈ R} ⊆ R2 be the vertical line over x. Let
π : R2 → R be the projection onto the second coordinate π(x, y) = y. Define

τ = {G ⊆ R2 : π(G ∩ Lx) is open for every x ∈ R}.
(a) Show that τ is a topology on R2 and (R2, τ) is a locally compact Hausdorff space.
(b) Prove that K ⊆ R2 is compact (with respect to τ) if and only if π(K ∩Lx) is compact for every

x ∈ R and K ∩ Lx = ∅ for all but finitely many x.
(c) Define φ : Cc(R2, τ) → C by

φ(f) =
∑
x∈R

∫
R
f(x, y) dy,

where the integral with respect to y is the Riemann integral. Show that φ is a positive linear
functional.

(d) Determine the measure µ representing φ.

Solution: (a) We check that τ satisfies the axioms of a topology:

• ∅ ∈ τ : π(∅ ∩ Lx) = ∅ for every x ∈ R, and ∅ is open in R.
• R2 ∈ τ : π(R2 ∩ Lx) = R for every x ∈ R and R is open in R.
• τ is closed under arbitrary unions: if (Gi)i∈I is a family of elements of τ and G =⋃

i∈I Gi, then π(G ∩ Lx) =
⋃

i∈I π(Gi ∩ Lx) is open in R for every x ∈ R, so G ∈ τ .
• τ is closed under finite intersections: if G1, G2 ∈ τ , then π(G1 ∩ G2 ∩ Lx) = π(G1 ∩
Lx) ∩ π(G2 ∩ Lx) is open in R for every x ∈ R, so G1 ∩G2 ∈ τ .

It remains to check that (R2, τ) is locally compact and Hausdorff. First we show that τ
defines a Hausdorff topology on R2. Let x, y ∈ R2, x ̸= y. Write x = (x1, x2) and y = (y1, y2).
If x1 ̸= y1, then the sets U = {x1} × R and V = {y1} × R are open neighborhoods of x and y
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respectively, and U∩V = ∅. If x2 ̸= y2, we take U = R×(x2−δ, x2+δ) and V = R×(y2−δ, y2+δ)
with δ < 1

2 |x2 − y2|.
Finally, τ defines a locally compact topology: given x = (x1, x2) ∈ R2, the set U =

{x1} × (x2 − 1, x2 + 1) is open its closure K = {x1} × [x2 − 1, x2 + 1] is compact. (Com-
pactness of K follows from the argument we present below for part (b)).

(b) Suppose K is compact. We want to show π(K ∩ Lx) is compact for every x ∈ R and
K ∩ Lx = ∅ for all but finitely many x.

Fix x ∈ R, and let Kx = π(K ∩ Lx). Let (Ui)i∈I be an open cover of Kx in R. Then
K ⊆

⋃
i∈I({x} × Ui) ∪ (R \ {x}) × R). Since K is compact, there is a finite subcover K ⊆⋃n

j=1({x} × Uij ) ∪ (R \ {x})× R). But then Kx ⊆
⋃n

j=1 Uij . Thus, we have extracted a finite
subcover of Kx, so Kx is compact.

Now consider the family of sets Ux = {x}×R. Then (Ux)x∈R is an open cover of K, so there
exists a finite set F ⊆ R such that K ⊆

⋃
x∈F Ux. In other words, π(K ∩ Lx) = ∅ for x /∈ F .

Conversely, suppose K satisfies the two properties: π(K ∩ Lx) is compact for every x ∈ R
and K ∩ Lx = ∅ for all but finitely many x. Let (Gi)i∈I be a family of sets in τ such that
K ⊆

⋃
i∈I Gi. By assumption, the set F = {x ∈ R : π(K∩Lx) ̸= ∅} is finite. Moreover, for each

x ∈ F , the set Kx = π(K ∩Lx) is compact, and we have an open cover Kx ⊆
⋃

i∈I π(Gi ∩Lx).
Hence, there is a finite subcover Kx ⊆

⋃
i∈Jx π(Gi ∩ Lx) for some finite set Jx ⊆ I. Letting

J =
⋃

x∈F Jx, we have that J is finite andK ⊆
⋃

j∈J Gj . Thus,K is a compact subset of (R2, τ).

(c) Let f ∈ Cc(R2, τ), and let K = supp(f). By (b), the set F = {x ∈ R : π(K ∩ Lx) ̸= ∅}
is finite, and Kx = π(K ∩ Lx) is compact for each x ∈ F . We can therefore evaluate

φ(f) =
∑
x∈F

∫
Kx

f(x, y) dy

as a finite sum of Riemann integrals. Thus, the a priori infinite sum in the definition of φ is in
fact finite, so φ is well-defined. Linearity of φ follows from linearity of addition and the Rie-
mann integral, and positivity of φ follows from positivity of the Riemann integral. Therefore
φ is a positive linear functional on Cc(R2, τ).

(d) We claim that the measure µ can be evaluated as follows: if E ⊆ R2 is a Borel set (with
respect to τ), then

(5) µ(E) =

{∑
x∈I λ(Ex), if I = {x ∈ R : Ex ̸= ∅} is countable,

∞, otherwise.

Here, Ex is the cross-section Ex = {y ∈ R : (x, y) ∈ E} = π(E ∩ Lx), and λ is the Lebesgue
measure on R.

Let ν(E) be the quantity defined by the right hand side of (5). By the uniqueness part of
the Riesz representation theorem, it suffices to check that ν is a Radon measure on (R2, τ) and∫
R2 f dν = φ(f) for f ∈ Cc(R2, τ).

Claim 1: ν is a measure.
If E = ∅, then Ex = ∅ for every x ∈ R, so ν(∅) = 0. Suppose E1, E2, · · · ∈ Borel(R2, τ)

are pairwise disjoint, and let E =
⊔

n∈NEn. Then Ex =
⊔

n∈N(En)x for every x ∈ R. Let
In = {x ∈ R : (En)x ̸= ∅} for each n ∈ N, and note that I =

⋃
n∈N In. If In is uncountable

for some n ∈ N (in which case ν(En) = ∞), then I is uncountable, so ν(E) = ∞. Therefore,
ν(E) =

∑∞
k=1 ν(Ek). On the other hand, if In is countable for every n ∈ N, then I is also



8 MATH 303 EXAM STUDY GUIDE

countable, and we have

ν(E) =
∑
x∈I

λ(Ex) =
∑
x∈I

λ

(⊔
n∈N

(En)x

)
=
∑
x∈I

∞∑
n=1

λ ((En)x) =
∞∑
n=1

∑
x∈I

λ ((En)x) =
∞∑
n=1

ν(En).

The interchange in the order of summation is justified by the fact that all of the quantities
λ ((En)x) are nonnegative. This proves that ν is a measure.

Claim 2: ν is locally finite.
Let K ⊆ R2 be compact (with respect to τ). Then by part (b), the set I = {x ∈ R : Kx ̸= ∅}

is finite, and Kx is compact for every x ∈ I. Hence, by local finiteness of the Lebesgue measure
λ, we have that

λ(K) =
∑
x∈I

λ(Kx)

is a finite sum of finite numbers, so λ(K) < ∞.

Claim 3: ν is outer regular.
Let E ∈ Borel(R2, τ) be an arbitrary Borel set. We want to show ν(E) = infU⊇E open ν(U).

Monotonicity of ν produces the inequality ν(E) ≤ infU⊇E open ν(U), so it suffices to check
ν(E) ≥ infU⊇E open ν(U). If ν(E) = ∞, there is nothing to check, so assume ν(E) < ∞.
That is, I = {x ∈ R : Ex ̸= ∅} is countable and ν(E) =

∑
x∈I λ(Ex) < ∞. Let ε > 0. For

each x ∈ I, let εx > 0 such that
∑

x∈I εx = ε. (This is made possible by the fact that I is a
countable set.) By outer regularity of the Lebesgue measure, we may choose, for each x ∈ I,
an open set Ux ⊇ Ex such that λ(Ux) < λ(Ex) + εx. Let U =

⊔
x∈I({x}×Ux). Then U ⊇ E is

open in (R2, τ) and ν(U) =
∑

x∈I λ(Ux) < ν(E)+ε. Thus, ν(E) ≥ infU⊇E open ν(U) as desired.

Claim 4: ν is inner regular on open sets.
Let U ⊆ R2 be open (with respect to τ). We want to show ν(U) = supK⊆U compact ν(K).

By the definition of the topology τ , the set Ux is open for every x ∈ R.
First suppose I = {x ∈ R : Ux ̸= ∅} is countable. Then

ν(U) =
∑
x∈I

λ(Ex) = sup
F⊆I finite

∑
x∈F

λ(Ex).

Let F ⊆ I be an arbitrary finite subset. Let ε > 0 be arbitrary. By inner regularity of the
Lebesgue measure, pick a compact set Kx ⊆ Ex with λ(Kx) > λ(Ex) − ε

|F | for each x ∈ F .

Then K =
⊔

x∈F ({x} ×Kx) is compact in (R2, τ) by part (b), and

ν(K) =
∑
x∈F

λ(Kx) >
∑
x∈F

λ(Ex)− ε.

Thus, supK⊆U compact ν(K) ≥ ν(U).
Now suppose I = {x ∈ R : Ux ̸= ∅} is uncountable. In this case, we want to show

supK⊆U compact ν(K) = ∞. Note that λ(Ux) > 0 for every x ∈ I, since every open subset of

the real line has positive Lebesgue measure. Therefore, In = {x ∈ R : λ(Ux) >
1
n} is infinite

(in fact, uncountable) for some n ∈ N. By inner regularity of the Lebesgue measure, there
exist compact sets Kx ⊆ Ux for each x ∈ In with the property λ(Kx) >

1
2n . Given any finite

set F ⊆ I, the set KF =
⊔

x∈F ({x} ×Kx) is a compact subset of U , and

ν(KF ) =
∑
x∈F

λ(Kx) ≥
1

2n
|F |.
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Therefore, supK⊆U compact ν(K) = ∞ as desired.

Claims 1–4 together show that ν is a Radon measure. The next claim therefore completes
the proof.

Claim 5: For every f ∈ Cc(X), ∫
R2

f dν = φ(f).

Decomposing f into its real and imaginary parts and then each of these into positive and
negative parts, we may assume that f is a nonnegative real-valued function. Let K = supp(f),
and let I = {x ∈ R : Kx ̸= ∅}. By (b), I is a finite set and Kx is compact for every
x ∈ I. Let 0 ≤ s1 ≤ s2 ≤ . . . be a sequence of simple functions increasing to f . We may write

sn =
∑kn

j=1 cn,j1En,j with cn,j ≥ 0 and En,j ⊆ K, since f vanishes outside of K and 0 ≤ sn ≤ f .
Then∫
R2

sn dν =

kn∑
j=1

cn,jν(En,j) =

kn∑
j=1

cn,j
∑
x∈I

λ ((En,j)x) =
∑
x∈I

kn∑
j=1

cn,jλ ((En,j)x) =
∑
x∈I

∫
R
(sn)x dλ.

Applying the monotone convergence theorem twice, we conclude∫
R2

f dν = lim
n→∞

∫
R2

sn dν = lim
n→∞

∑
x∈I

∫
R
sn(x, y) dλ(y) =

∑
x∈I

∫
Kx

f(x, y) dy = φ(f).

Problem 9. For x ∈ [0, 1), consider the binary expansion x =
∑∞

j=1
aj(x)
2j

with aj(x) ∈ {0, 1}. Let
f(x) = min{j ∈ N : aj(x) = 1}.
(a) Show that f is Borel-measurable.
(b) Compute the integral of f with respect to the Lebesgue measure on [0, 1).

[Note: This problem has a probabilistic interpretation. Sampling x ∈ [0, 1) randomly according to
the Lebesgue measure, the sequence a1(x), a2(x), a3(x), . . . is a sequence of independent fair coin
flips (where we interpret 0 as tails and 1 as heads). With this interpretation, the value of

∫
[0,1) f dλ

is the expected number of flips required until we see a result of heads.]

Solution: (a) The function f may be rewritten as

f = 1[1/2,1) + 21[1/4,1/2) + · · · =
∞∑
n=1

n1[2−n,2−(n−1)),

which is the supremum of a sequence of measurable simple functions, hence measurable.

(b) By the monotone convergence theorem and the series expression for f ,∫ 1

0
f(x) dx =

∞∑
n=0

n
(
2−(n−1) − 2−n

)
=

∞∑
n=1

n

2n
.

To compute the value of this sum, we consider the power series g(x) =
∑∞

n=1 nx
n. Note that

g(x) converges absolutely for |x| < 1, so we may differentiate term by term to obtain the
expression

g(x) = x

∞∑
n=1

nxn−1 = x
d

dx

( ∞∑
n=0

xn

)
= x

d

dx

(
1

1− x

)
=

x

(1− x)2
.
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Substituting x = 1
2 , we conclude ∫ 1

0
f(x) dx = 2.

Problem 10. Let (X,B, µ) be a measure space. Show that the following are equivalent:

(i) µ is s-finite;
(ii) there exists a finite measure ν such that µ ≈ ν;
(iii) there exists a σ-finite measure ν such that µ ≪ ν.

Solution: (i) =⇒ (ii). This is essentially contained in the proof of the Lebesgue decom-
position theorem in the lecture notes. Write µ =

∑∞
n=1 µn with µn(X) < ∞, and define

ν =
∑∞

n=1
µn

2n(µn(X)+1) . Then ν(X) < 1 and µ ≪ ν.

(ii) =⇒ (iii). Finite measures are σ-finite, so this implication is immediate.

(iii) =⇒ (i). Let ν be a σ-finite measure such that µ ≪ ν. Then by the Radon–Nikodym

theorem, there exists a Radon–Nikodym derivative f = dµ
dν . Moreover, since ν is σ-finite, we

may decompose X =
⊔

n∈NXn with ν(Xn) < ∞. For m ≥ 0, let

fm,n =
(
(f −m)1{m<f≤m+1} + 1{f>m+1}

)
1Xn .

Then 0 ≤ fm,n ≤ 1,
∫
X fm,n dν ≤ ν(Xn) < ∞, and

∞∑
m=0

∞∑
n=1

fm,n =
∞∑

m=0

(
(f −m)1{m<f≤m+1} + 1{f>m+1}

)
= f.

Therefore, if we define measures µm,n by dµm,n = fm,n dν, then µm,n is a finite positive measure
for every m,n, and µ =

∑
m,n µm,n, so µ is s-finite.

Problem 11. Let µ1, µ2 be finite positive measures on a measurable space (X,B). Characterize
the pairs (µ1, µ2) for which (µ1 − µ2)

+ = µ1 and (µ1 − µ2)
− = µ2.

Solution: Let µ = µ1 − µ2. We claim that µ+ = µ1 and µ− = µ2 if and only if µ1 ⊥ µ2.
First if µ1 ⊥ µ2, then µ1 and µ2 are mutually singular positive measures such that µ =

µ1 − µ2, so by uniqueness of the Jordan decomposition, µ1 = µ+ and µ2 = µ−.
Conversely, suppose µ+ = µ1 and µ− = µ2. By the Jordan decomposition theorem, the

measures µ+ and µ− are mutually singular, so µ1 ⊥ µ2.

Problem 12. Let (X,B, µ) be a finite measure space, and let A,B ∈ B. Define ν(E) = µ(E ∩
A)− µ(E ∩B) for E ∈ B.
(a) Show that ν is a signed measure.
(b) Determine the Hahn decomposition of ν.
(c) Show that ν ≪ µ.
(d) Compute the Radon–Nikodym derivative dν

dµ .

Solution: (a) Since µ is a finite measure, the difference µ(E∩A)−µ(E∩B) is well-defined. We
must check ν(∅) = 0 and ν is countable additive. Both properties follow from the corresponding
properties of the measure µ:

ν(∅) = µ(∅ ∩A)− µ(∅ ∩B) = µ(∅)− µ(∅) = 0,
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and if (En)n∈N are pairwise disjoint and E =
⊔

n∈NEn, then

ν(E) =
∞∑
n=1

µ(En ∩A)−
∞∑

m=1

µ(Em ∩B)
(∗)
=

∞∑
n=1

(µ(En ∩A)− µ(En ∩B)) =
∞∑
n=1

ν(En).

In step (∗), the reordering of the sum is justified by noting that µ is a finite measure, so all
of the sums involved are absolutely convergent and can be freely rearranged by the Riemann
rearrangement theorem.

(b) We claim that (A,X \ A) is a Hahn decomposition of ν. Indeed, if E ∈ B with E ⊆ A,
then

ν(E) = µ(E ∩A)− µ(E ∩B) = µ(E ∩A)− µ(E ∩ (A ∩B))︸ ︷︷ ︸
≥0

−µ(E ∩ (B \A)︸ ︷︷ ︸
∅

) ≥ 0.

Moreover, if E ∈ B and E ⊆ X \A, then
ν(E) = µ(E ∩A︸ ︷︷ ︸

∅

)− µ(E ∩B) = −µ(E ∩B) ≤ 0.

(c) Suppose µ(N) = 0. We want to show that N is a ν-null set. Let E ∈ B with E ⊆ N .
Then ν(E) = µ(E ∩A︸ ︷︷ ︸

⊆N

)− µ(E ∩B︸ ︷︷ ︸
⊆N

) = 0, so N is ν-null as desired.

(d) We claim dν
dµ = 1A − 1B µ-a.e. To see this, let E ∈ B. Then∫

E
(1A−1B) dµ =

∫
X
(1A−1B)1E dµ =

∫
X
(1A∩E−1B∩E) dµ = µ(A∩E)−µ(B∩E) = ν(E),

so dν = (1A − 1B) dµ as claimed.

Problem 13. Let X be an LCH space, and let µ be a Radon measure on X. Show that there
exists a closed set C ⊆ X with the following two properties:

(i) µ(X \ C) = 0, and
(ii) if U ⊆ X is open and U ∩ C ̸= ∅, then µ(U) > 0.

[Note: The set C is called the (topological) support of the measure µ.]

Solution: Let U = {U ⊆ X open : µ(U) = 0}, and define C = X \
⋃

U∈U U . Then C is a
closed subset, and we will check that it has the desired properties.

(i) Let V = X \ C =
⋃

U∈U U . We want to show µ(V ) = 0. Since V is open and µ is a
Radon measure, we have

µ(V ) = sup
K⊆V compact

µ(K)

by inner regularity of Radon measures on open sets. It therefore suffices to show: if K ⊆ V is
compact, then µ(K) = 0. Let K ⊆ V be compact. By compactness, we may find finitely many
U1, . . . , Un ∈ U such that K ⊆

⋃n
j=1 Uj . Then by monotonicity and (countable) subadditivity

of µ,

µ(K) ≤
n∑

j=1

µ(Uj) = 0

since Uj ∈ U for each j ∈ {1, . . . , n}. This proves (i).

(ii) Suppose U ⊆ X is open and U ∩ C ̸= ∅. Then U /∈ U , so µ(U) > 0.
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Problem 14. Let (X,B, µ) be a σ-finite measure space. Suppose ν1, ν2 are positive measures on
(X,B, µ) with ν1(X) = ν2(X) = 1 and ν1, ν2 ≪ µ. Show

sup
E∈B

(ν1(E)− ν2(E)) =
1

2

∫
X

∣∣∣∣dν1dµ
− dν2

dµ

∣∣∣∣ dµ.

Solution: Let ν = ν1−ν2. Finiteness of the measures ν1 and ν2 ensures that ν is a well-defined
signed measure. Then the left hand side is equal to ν+(E) and the right hand side is equal to

(6)
1

2

∫
X

∣∣∣∣dνdµ
∣∣∣∣ dµ.

We showed in the last homework assignment that
∣∣∣ dνdµ ∣∣∣ is the Radon–Nikodym derivative of |ν|

with respect to µ. Hence, (6) is equal to

1

2

∫
X

d|ν|
dµ

dµ =
1

2
|ν|(X).

Thus, our goal is to show ν+(X) = 1
2 |ν|(X). Since |ν| = ν++ ν−, this is equivalent to showing

ν+(X) = ν−(X), but this follows immediately from the assumption ν1(X) = ν2(X) < ∞:

ν+(X)− ν−(X) = (ν+ − ν−)(X) = ν(X) = (ν1 − ν2)(X) = ν1(X)− ν2(X) = 0.

Problem 15. Let A,B ⊆ [0, 1) be Lebesgue-measurable sets. For each t ∈ [0, 1), let Bt = {b + t
mod 1 : b ∈ B}. Show that there exists t ∈ [0, 1) such that λ(A ∩Bt) ≥ λ(A)λ(B).

Solution: We will show that the average size of the intersection λ(A∩Bt) = λ(A)λ(B). Indeed,
by Tonelli’s theorem and invariance of Lebesgue measure under translation and reflection, we
have ∫ 1

0
λ(A ∩Bt) dt =

∫ 1

0

∫ 1

0
1A∩Bt(x) dx dt

=

∫ 1

0

∫ 1

0
1A(x)1Bt(x) dx dt

=

∫ 1

0

∫ 1

0
1A(x)1B(x− t mod 1) dx dt

=

∫ 1

0
1A(x)

(∫ 1

0
1B(x− t mod 1) dt

)
dx

=

∫ 1

0
1A(x) dx

∫ 1

0
1B(t) dt

= λ(A)λ(B).

Subtracting λ(A)λ(B) from both sides, we obtain∫ 1

0
(λ(A ∩Bt)− λ(A)λ(B)) dt = 0,

so there exists t ∈ [0, 1) such that λ(A∩Bt)− λ(A)λ(B) ≥ 0. That is, λ(A∩Bt) ≥ λ(A)λ(B).

Problem 16. Let X be a compact metric space, and let T : X → X be a continuous function. We
say that a probability measure µ : Borel(X) → [0,∞] is T -invariant if µ(T−1E) = µ(E) for every
E ∈ Borel(X). Denote by M(X,T ) the space of T -invariant Borel probability measures on X.

(a) Show that M(X,T ) is a convex set.

Given a convex set C, a point x ∈ C is an extreme point if the only solution to x = ty + (1 − t)z
for t ∈ (0, 1) and y, z ∈ C is y = z = x.
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(b) Let µ ∈ M(X,T ). Show that the following are equivalent:
(i) µ is an extreme point of M(X,T ).
(ii) if E ∈ B and µ

(
E△T−1E

)
= 0, then µ(E) ∈ {0, 1}.

[Hint for (ii) =⇒ (i): Suppose µ satisfies (ii), and write µ = tν1 + (1 − t)ν2 with ν1, ν2 ∈
M(X,T ) and t ∈ (0, 1). Let f = dν1

dµ and consider E = {f < 1}. Show that
∫
E\T−1E f dµ =∫

T−1E\E f dµ and deduce that f = 1 a.e.]

A measure satisfying (ii) is called ergodic. Let E(X,T ) denote the set of ergodic T -invariant Borel
probability measures on X.

(c) Suppose µ, ν ∈ E(X,T ) and µ ̸= ν. Show that µ ⊥ ν.

Solution: (a) Let µ, ν ∈ M(X,T ) and t ∈ [0, 1]. Let ρ = tµ + (1 − t)ν. We want to show
ρ ∈ M(X,T ). Let E ∈ Borel(X). Then

ρ
(
T−1E

)
= tµ

(
T−1E

)
+ (1− t)ν

(
T−1E

)
= tµ(E) + (1− t)ν(E) = ρ(E)

by T -invariance of µ and ν.

(b) Suppose µ is an extreme point of M(X,T ). We want to show µ is an ergodic measure.
Let E ∈ B such that µ(E△T−1E) = 0 and suppose for contradiction that t = µ(E) ∈ (0, 1).
Define probability measures µ1, µ2 : Borel(X) → [0, 1] by

µ1(A) = t−1µ(A ∩ E) and µ2(A) = (1− t)−1µ(A \ E).

Note that

µ1

(
T−1A

)
= t−1µ

(
T−1A ∩ E

) (∗)
= t−1µ

(
T−1A ∩ T−1E

) (∗∗)
= t−1µ(A ∩ E) = µ1(A),

where in (∗) we use µ(E△T−1E) = 0 and in (∗∗) we use T -invariance of µ. Similarly,

µ2

(
T−1A

)
= (1−t)−1µ

(
T−1A \ E

)
= (1−t)−1µ

(
T−1A \ T−1E

)
= (1−t)−1µ(A\E) = µ2(A).

Thus, µ1, µ2 ∈ M(X,T ), so µ = tµ1 + (1− t)µ2 expresses µ as a nontrivial linear combination
of elements of M(X,T ). This contradicts the assumption that µ is an extreme point. Thus,
µ(E) ∈ {0, 1} and µ is an ergodic measure.

Conversely, suppose µ is ergodic and write µ = tν1 + (1 − t)ν2 with ν1, ν2 ∈ M(X,T ) and

t ∈ (0, 1). We want to show ν1 = ν2 = µ. Note that ν1, ν2 ≪ µ. Let f = dν1
dµ , and consider

E = {f < 1}. Then (as in the proof of the Radon–Nikodym theorem) the pair (E,X \E) is a
Hahn decomposition of the signed measure µ−ν1. Since µ and ν1 are both T -invariant, the pair
(T−1E,X \ T−1E) is also a Hahn decomposition of µ− ν1. Hence, E△T−1E is a (µ− ν1)-null
set by (the uniqueness part of) the Hahn decomposition theorem. In particular, E△T−1E is
µ-null. By the ergodicity assumption, it follows that µ(E) ∈ {0, 1}. If µ(E) = 1, then f < 1
µ-a.e., so ν1(X) =

∫
X f dµ < µ(X) = 1, which is impossible, since ν1 is a probability measure.

Hence, µ(E) = 0, so f ≥ 1 µ-a.e. A similar argument shows f ≤ 1 µ-a.e, so f = 1 µ-a.e. That
is, ν1 = µ. This proves that µ is an extreme point of M(X,T ).

(c) Let µ, ν ∈ E(X,T ) with µ ̸= ν. Let ν = νa + νs be the Lebesgue decomposition of ν
with respect to µ. Write X = A ⊔B with A,B ∈ B such that νa(B) = 0 and νs(A) = 0. Then
(A,B) is a Hahn decomposition for the signed measure ∞ · µ − ν and νa(E) = ν(E ∩ A) and
νs(E) = ν(E ∩ B) for E ∈ B. By T -invariance of µ and ν, the pair (T−1A, T−1B) is also a
Hahn decomposition of ∞ · µ − ν, so A△T−1A = B△T−1B is a null set for ∞ · µ − ν. In
particular, νa and νs are T -invariant measures. Suppose for contradiction that νa ̸= 0. Then
ρ = νa

νa(X) ∈ M(X,T ) and ρ ≪ ν and ρ ≪ µ. By the argument in the last paragraph in the
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proof of part (b), it follows that ρ = ν and ρ = µ. Hence, ν = µ. This is a contradiction, so
we must have νa = 0. That is, ν = νs is singular to µ.


